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Abstract 

This paper reports on the development of a parametric cost model that is 
being built at JPL to estimate  costs of future, deep space,  robotic  science 
missions. Because of the changes in the  mission implementation process 
and technology changes, the model is being built  in a dramatically 
different manner than past models  which  have  had access to a data base 
that drew heavily on the correlation between mass and actual costs. 
Instead, the  data  base is based  on  the  results  of an interdisciplinary team 
of technical  experts  that make up the core team  that  assesses  new 
proposals as they are  being  planned  under  the  new  business process being 
instituted at JPL. The  model is then  validated against actual  mission costs 
as the projects are  implemented.  The  discussion  will provide a summary  of 
this new process as it relates to the  development of the  model and, some  of 
the details of the  model itself, and  the status  of its validation  and plans for 
the future. 

Introduction 

The Jet Propulsion  Laboratory  (JPL)  in  Pasadena, California is a Federally-funded 
research & development (FFRD) center  which  is  run by the California Institute of 
Technology  for  the  National  Aeronautics  and  Space  Administration  (NASA). 

The  Jet  Propulsion  Laboratory is operated  by  the  California  Institute of Technology  for  the  National 
Aeronautics and Space  Administration. 
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As a NASA FFRD center, the  Jet  Propulsion  Laboratory (JPL), has  the lead role for 
robotic deep space exploration and  its  record of successful missions from Explorer to 
Viking, Voyager, and  Mars Pathfinder have given it a highly-deserved world-wide 
reputation. In  the  past,  the  development  and  implementation of these projects took  from 
three  to five years,  the  spacecraft  developed  carried a large  payload,  and  usually  involved 
a lengthy operations and  data  taking  period. In  the 1990’s however, it became evident 
that  the  NASA  budget could no longer  sustain this paradigm  and  began investigating 
changes to the  mission  development  process  that  would  permit  launching a larger set of 
smaller  missions at more  frequent  intervals.  This  initiative was labeled  as “Faster, Better, 
Cheaper”  (FBC) by the  NASA  administrator. 

JPL  immediately  committed  itself to the  concept of developing  and  launching a 
continuously improving series of smaller  robotic space exploration missions in shorter 
intervals of time. In order to plan  and  budget these advanced missions, JPL began  an 
institutional initiative labeled  “Develop New Products”(DNP)  which  is consistent with 
the  intent of the  FBC  imperative.  This  institutional  initiative  involves  an  across-the-board 
paradigm shift in the process with  which  new projects are planned, designed, and 
implemented in an  accelerated  implementation cycle. A key factor in  the planning of 
these missions is  an  accurate  estimation of their cost so that an adequate, yet efficient, 
budget may  be proposed that  will  not  only  be acceptable to  NASA  but will ensure a 
realistic implementation of a specific project within a predetermined project 
implementation  schedule  and  risk  envelope. 

In accord with  the  DNP  concept,  the  advanced  project  planning process was likewise 
accelerated so that  cost  estimates may  be produced within a one  to  two  week cycle. This 
permits a second or third  cost  estimate  to be  produced  that  takes  into  account  technology- 
cost trades vs. science objectives derived  from  the  advanced  planning deliberations in 
which  the cost estimators play a key  role.  Once  converged,  this  process leads to a budget 
estimate that  has  achieved a certain  degree of consensus  within  the JPL community  and 
its  industrial  partners  prior to entering  the  proposal  stage.  Because  of this, the  probability 
of approval of the  proposal  is  greatly  increased. 

In 1995, in  order to keep  JPL  competitive  with  commercial  spacecraft contractors, and 
also deal  with  the large number of proposals  being  generated,  JPL  formed  an  Advanced 
Product  Design Team (APDT),  which  is  also  known as Team X. This team conducts its 
deliberations around a distributed  workstation  facility  that  interacts  through a network in 
conjunction with a central data  base  and a documentarian.  This  arrangement  permits  the 
study  leader  and  team  members to  interact in “real  time” to develop a preliminary  design 
and cost estimate  within a week.  Such a process  would  normally  have  taken  from  three  to 
four months under the previous paradigm. An unmanned mission and spacecraft 
implementation cost model  was  developed to function within this environment. This 
model  is  consistent with the  DNP  assumptions  and  permits  cost  estimates to be  obtained 
interactively  as  the  design  converges in the  interactive  environment just described. 
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This paper describes the subsystem portion of the  unmanned  mission  and spacecraft 
implementation cost model  used in this interactive environment. The mission and 
spacecraft subsystem cost model  was  developed by Mr.  Leigh  Rosenberg of JPL. An 
adjunct  instrument  model was  developed  by  Mr.  Keith  Warfield, also of  JPL. 

Model  Overview 

Because  very  few  unmanned  space  missions  have  been  fully  implemented  using  the  new 
spacecraft  development  lifecycle  paradigm shift, the  cost  model  used  cannot  be  based  on 
a historical  database of previously  implemented  missions.  Rather,  the  model  is  based  on a 
data  base of the  prior  estimates of proposed  missions  that  have  been  developed  using  the 
Team X process and that have  been certified as viable candidates for future mission 
proposals.  As a result,  the  model  described  here  acts as a predictor of Team X results  and 
is currently used to validate  the  on-going estimates being developed with  respect to a 
consistency with  the  DNP  Process,  past  predictions,  and  previously  proposed  designs. 

Although the  model  is a predictor of the planning team results, it was nonetheless 
designed as if the  parameters  and cost data  were  obtained  from  an as-built design. An 
effort  is  under  way  to  validate  model  estimates  obtained  using  the  new  paradigm as soon 
as mission  implementation  costs  are  available  from  more  recent  missions  that  do  business 
under  the  new  paradigm. 

The Cost Model  is  linked to the  Team X system  and  subsystem  workstations so that  the 
technical parameters required by the  model are passed to the cost workstation  which 
updates  the estimates of the  cost for each  subsystem  as  the  deliberations  are in progress. 
The  model cost estimates are  then  used  as a comparator to the costs being  estimated by 
the  team  and  are  kept  separate  from  the  team  deliberations so as not to bias  the  results. 
The Model cost estimates used in this  manner  are  calculated  using algorithms derived 
from the cost estimation relationships (CER’s) derived from  the statistical analysis 
performed  on  the data base of DNP  projects  mentioned  above. 

Some of  the  non-technical projecthystem infrastructure  costs  used  during  the  Team X 
sessions are estimated by algorithms derived from historical costs for similar type 
projects  (scaled  to  the  DNP  project  time  phase  constraints).  Since  they  are a function of 
total system, subsystem, and  instrument costs, the  algorithms  permit a quick  assessment 
of the infrastructure costs  as  the  subsystem  costs  are  being  developed. At the  end of the 
deliberations the  predicted  infrastructure costs are  examined by the  Study  Lead  and  the 
Team X system  engineer and  may  be  overridden  by  them. 

The cost estimation process  uses differing approaches  to  predicting cost based  on  the 
portion of the  work  breakdown  structure (WBS) being  estimated.  The  basic  methods  used 
for estimating  the cost of the  distinct  portions of  the  total  project  cost  are: 
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1. Statistically-based  algorithms from the  previous  Deep  Space  Mission Cost Model  that 
have  been  adjusted to conform  to  the  DNP  paradigm.  This  type of algorithm  is  termed 
historically-based  algorithms. 

2. Non-statistical  algorithms  based on a  quasi-grass-roots-based  estimate  and expert 
opinion  formulated in consultation with technical  specialists in the  area of the 
project  component  being  assessed.  The  algorithm  is  based on an evaluation of 
actual  data  and  the  design of  the  function  being  performed  but  which  does  not 
have  sufficient  structure to formulate  a  model  at  this  time. 

3. The current  parametric  Instrument  Cost  Model  developed by Keith  Warfield 
4. The current  parametric  Subsystem  Cost  Model  developed by Leigh  Rosenberg 
5. The actual  price of  the  item  being  assessed, as in  the  case  for  launch  vehicles, 

where  the  cost to the  government  is  either  predetermined by agreement  with  the 
vendors or is  the  listed  price for the  service. 

The following table  lists  the  components of the  advanced  project cost estimation  process 
for mission  development  costs and the  method  used: 

Table 1. Mission  Development  Cost  Component  vs.  Estimation  Method 

Assembly,  Test,  and  Launch  Operations 

Current  Price to Government  Launch  Vehicle  and  Launch  Services 
Quasi-GR-Based  Algorithm Mission  Operations  Development 
Quasi-GR-Based  Algorithm 

I I 1 

The discussion in this  paper  concerns  itself  solely with the  parametric  spacecraft 
subsystem costs, item  as  marked (4). 

Cost Model Data Base 

The Subsystem Cost Data  Base is a collection of all of the system and subsystem 
technical parameters, subsystem  masses,  and  associated  cost estimates obtained as the 
result of Team X deliberations  from  October 1996 to  the  current  date.  However,  because 
of proprietary and security restrictions, only  the  parameters from seventeen of these 
proposed  unmanned  deep  space  projects  whose  estimates  and  parameters  are  contained in 
the  data  base will be  used to  illustrate the model concept in this report.  For 
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understandable reasons, the  missionslprojects  themselves will not  be named,  but will 
instead  be  listed by an  assigned  code  number. 

The model  parameters  are  continuously  undergoing  some  fine  tuning  as Team X review 
of the  design,  results in modification to  the  parameters in the  data  base. 

Table 2, below,  lists  the  cost  portion of the  data  base by project.  Due to  the  sensitive 
nature of the  cost  data  regarding  projects,  these  are  only  identified by a  placeholder 
identification  as PI, P2, etc. 

Table 2. Subsystem  Data Base Cost  Summary 

Subsvstem  Coats (FY97SM) 
P r o j e c t  Other Therm  S truc t  P r o p  Power  Telcom CbDH ADCS TotSM 

Core I S / W  Core I M e B / U  
P1 
P2 

17.8  12.7  2.0  15.0  6.7  15.7  12.3  3.4  5.8 91.4 

13.4 4.4 2.0 13.9  15.2  20.7  10.3  3.4  2.2  9.5 95.0  P3 
17.7  9.1  1.4  13.0  14.6  19.6  9.5  3.4  8.4 96.7 

4 .0  

P12 72.9 8.5 4 .8  1 .o 6.6 9.1 10.2 10.1 3 .3  4.3  15.0 
P13 69.2 17.8 8.5 1 .o 10.2 4.6 4.1 8 .9  2 . 8  1.7  9.6 
P14 54.8 11.9 2 .4  0.8 10.4 5 .5  10.2 8 .3  3 .2  2.1 
P15 33.4 6.1 2.1 0.6 5.0 5 . 3  3 .5  7 .4  1.7 1.7 
P16 51.7 10.2 2.9 0.8 8.1 6.1 9.7 9 .4  2.8 1.7 
P17 36.7 6.2  2.4 0.7 5.4 5.8 3.5 8.2 2.8 1.7 

Avg 67.0 11.9 5.8 1.2 9.7 8.2 10.7 9.6 3.1 3.4  11.4 
StdDev 21.8 4.4 3.5 0.5 3.3 3.6 5.9 1 .5  0.6  2.2 2.6 

Max 96.7 17.8 12.7 2.0 15.0 15.2 20.7 12.3 4.0 8 .4  15.0 
Min 33.4 6.1 2.1 0.6 5.0 4.6 3.5 7.4 1.7 1.7 9.5 

Table 3, lists the instances of the  design  parameters, {c} which  have  been selected as 
having  a  causal  relationship  to  cost  for  all  projects in the  data  base. 

Table 3. Subsystem  Data  Base  Values for Technical  Parameters  by  Project 

3 5.2 chem 325 291  291 52.4 800 3 0  goo 380 KA H i  125 1641 (see 
3.4 Geps 9 E P . m  3000 8199 305 69.9 200 30 1800 360 X High 150  1085 Table 

SEP,Cbm 3500 711 192 2 1.2 1.44  360 180.0 XlKa Hgh 15 1081 3 )  

P I 2  
P13 

3 4.6 117  117 

Spin 0 . 5  ~ . * s . ~ i i o n  N Z H I  220  97 97.3  5  0.01 0.03 0.008 3600 900 S Single 5 478 P15 
Spln 0.8  G.As.Liion P14 

0.1 Selected 354 
3 5 56 N Z H I  220 189  189 33.5  4  125 10 3 0  5 X/Ka Selected 72 530 

S i n  0.8  G.*~Ltlon  bi-orm 325  153 153.1 5 2 2 128 3600 900 S Selected 5  826.8 P16 

325  215 214.9  10 2 2 0.008 900  I80 S Single 5 1004 

I P17 I &in 0.5 G . * S . L I ~  N Z H i  220 115 115  5  20  3600 900 S Single 5   491 
Avg 3 . 0  4.1 n/a nla 1428.9  1007.3 208.2  27.7 1.6 103 .3   10 .2   1053.8   299 .8  nla nla 5 2   9 3 3  

SIdDev 0.0  2.1 nla nla 1484.3  1862.9  78.3  23.8  1.6  188.5  12.1  1094.6  260.6 nla nla 5 4   3 9 5  

I 
M a x  3 . 0  7.1 n/a nla 3500.0 6199.3  324.0 6 9 . 9  4 . 0  600.0 30.0 3600.0 900 .0  nla nla 1 5 0  1641 
Mln 3 .0  0.5 nla nla 220.0 116 .5  97 .3  2 .0  0.0 0.0 0.0 30.0 5 . 0  nla 1118 5 354  

5 



The subsystem  mass  plays a role  as a cost  estimation  parameter in some  instances. Table 
4. lists the subsystem mass data in the data base.  When applicable to a particular 
regression fit, the subsystem mass is  used as one of the  technical parameters for the 
regression  fit. 

Table 4. Subsystem  Data  Base  Values for Mass 

PI 25.7 14.6 30.3 27.4 118.7 173.6 4 7  17.6 138.5 1044.2 5 .5  
P2 37.5 17.5 14.3 104.3 127 169.3 7 9  27.9 173 328.5 8 .8  

1641 
1085 

72.2 159  371.8 0 

PI3 15.9 10.4 13.1 10.4 8.7 71.6 4.4 180 46.3 4.0 14.8  150 530 
PI4 6.9 1 1  17.1 21.5 69.8 144.7 12  221.6 106.3 392.9 0 
PI5 1.9 1 10.4 15.3 12.2 88.6 7.8 256.6 48.4 35.5 0 478 

1004 

PI6  7.1  1.6  22.7  15.3  53.8  125.2 1 3  275.1  80.8  232.2 0 827  1 PI7 I 5.8 10.4  10  16.4  12.2  94.1 7.8  250  54  30.1 0 I 4911 
Avg 17.8  10.4  17.1  43.4  78.4  134.4  28.5  129.3  111.6  362.6  4.8  84.6  966 

StdDev 11.7 5 . 2  6 .4  35.9 52.3 39.8 26.6 94.3 49.9 342.0 5.5 65 .4  389 
Max 37.5 17.5 30.3 104.3 134.0 173.6 79.0 2 5 6 . 6  173.0 1044.2 14.6 150.0 1641 
Min 1.9 1.0 10.4 10.4 8.7 71.6 4.4 17.6 46.3 4 .8  0.0 19.2 478  

Model Construction 

In order to predict  subsystem  costs  from  the  data  presented in  the  database, a model  that 
relates subsystem cost to the  parameters {c} in table 3 is  required. The approach  taken 
was  to  define a regression  model  function  that  could  be  used for each of the subsystems 
to predict cost within  the  parameter data domain. The cost data and the parameters 
relevant  to  each  subsystem  would  form  the  basis  for a first order  regression fit that  would 
result  in an equation that  would  then  be  used  to  predict  costs for that subsystem within 
the predictive constraints imposed by the fit. The  total  subsystem costs would then  be 
obtained by summing  all of the  subsystem  cost  estimates. 

It  was  determined,  through  analysis  and experimentation, that a generalized first order 
multivariate linear regression  function  [Draper  and Smith,l966, 8 5.11 would provide 
very  acceptable fits for the  data set currently  in  the  data  base. This type of function is 
traditionally  expressed as follows: 

where r\i is the dependent variable, Xij are the independent variables, pj are the 
undetermined coefficients of Xij  to  be  determined by means of the linear regression 
process,  and Po is a constant  (also  to be determined).  The  index, i, refers to a particular 
instance  where a measurement of r\i occurs  for  the  specific  subsystem for which  the 
linear  estimation  is  being  made. 
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Assume  that Yi is the  measurement of Ti such  that, 

where Ei is  the  measurement error and errors are  assumed  to  be additive and  satisfy the 
Gauss- Markov  assumptions  [Beck  and  Amold,1977, 0 51.31. 

This being  the case, we  may  then express  the  regression  function < I >  as: 

(i= 1 ,k) <3> 

In the particular application in question,  the  following  interpretation  will be given to the 
variables  and  coefficients: 

The  instance, i, of a  cost  measurement, Y, for the subsystem 
under  assessment.  Yi,  is  considered an estimate of the  regression 
function vi of the  parameter  values (Xi),  pertaining to the 
specific  instance. 
Instances of the  technical  parameters  selected  from  the set {e}  
that  have  a  causal  relation to the  cost, Y. The  selected  parameters 
are  ordered  from j=1, k, in the  equation <3>. This  ordinal 
specification may be  different  than  that  used  in  the  global set of 
parameters [ k }  since  only  the  parameters  influencing  the  cost 
are  selected. 
The  coefficients of the  linear  regression  equation for the 
subsystem  being  assessed  that  are to be  estimated  by  means  the 
regression  process. 
The  measurement error, Yi-Ei. 

This form, <3>, is  the  regression  model to be  used  in  the discussion  that  follows.  Other 
model  approaches  (including  non-linear)  were  examined but did  not  produce significant 
improvements  in fit for the  particular  set of data  being  evaluated. 

The linear regression  estimation  process  operates on  two  sets of data defined from the 
data  base. These are: 1) an nxl matrix of the  cost  instances, Yi, for the  subsystem  being 
assessed , and 2) a corresponding nx(k+l) matrix of the instances of the technical 
parameters,  Xij  selected as being  causal  for  this  subsystem. 
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Y =  

L 

<4> 

0 

The variables,  Xio, are dummy  variables  whose  value  is  always  equal to one. 

Using these data as input, the linear estimation  process solves for estimates of that 
minimize Ei. These estimated coefficients are  termed,  bj. In general, the results of the 
regression  estimation  is  expressed with  the  predictive  equation: 

(i=l,k) c6> 

where yi is  the  predicted  cost  for  the  subject  subsystem  at any instance i , based  on  the 
estimated  parameter  coefficients,  bj,  and  the  parameters, Xij, specified for that  subsystem 
at  that  instance.  When  using  the  predictive  equation,  care  must  be  taken  to ensure that  the 
parameters selected fall within  the  domain of the  data  base  parameters. If they do not, 
adaptive  strategies may  be  taken  to  include  them. 

When  the subsystem costs have  been  individually  estimated,  the  total  spacecraft system 
costs may  be calculated by summing  the  subsystem  results.  Additional costs for system 
management, system engineering, spares, integration and test, and operations support 
need to be  added to complete the  cost estimate for the spacecraft. These costs and  the 
costs associated with  the project infrastructure itself  will  be dealt with  in a folow-on 
paper* 

The  basic  process  in  construction of the  model  were  as  follows: 
1 )  Validate  the  model  data  base  to  ensure  that  all of the  information  is 

2) In  consultation  with  subsystem  technologists,  establish  the  initial  set of 
appropriate  and  accurate, 

parameters, Xi,, casually  related  to  estimating  the  cost of  each subsystem 
Yi (eg, mass,  power  generation,  radiation  dosage,  etc.).  Ensure  that  these 
are appropriately  and  accurately  represented in the  data  base. 

3) Determine  the  general  regression  function to be  used  (as  above), 
4) Conduct an evaluation  strategy  using  the  regression  strategy  selected to determine 

the “best” parameters to leave in the fit. In this case a modified backward 
elimination process was  performed  to  reduce  the  set of parameters, Xij to be 
considered to those  resulting in a validated  “best fit” and  and  whose t statistics 

8 



indicate validate the N(0,l)  hypothesis on  the means, consistent with a 
maximization of  the Coefficient of Multiple  Determination, (R2). Standard F- and 
t-test  constraints for fit and  coefficient  validity  were  utilized. 

5) Validate  the  resulting  model  against  expected  behavior  within  the  valid range of 
the  parameters.  The  model  behavior  is  checked  against  independent subsystem 
estimates  provided by the  expert  for  that  subsystem. 

6) Reconstruct  any  of  the  model  equations  based  on  any  new  information 
obtained in the  process of validating  the  model  equation  in (5. 

7) The entire set of subsystem  costs  are  then  validated  against  the  data  base  itself to 
ensure that  the difference of the costs obtained vs.  the data base costs  for a 
particular  project  are  within  the  expected  variance of the  model. 

The current model equations are updated  as  improved interpretation of the technical 
parameters is obtained by working  with  the  technical experts in  that  area. The model 
equations will  also  be  reviewed  and  validated as soon as actual  cost  data  is available for 
DNP-Type  projects.  Work  is  in  progress to collect cost and technical data from new 
projects as they enter the implementation stage so that  the  model  may  be validated or 
corrected  with  improved  or  actual  cost  information. 

Linear  Estimation  Process  and  Resulting  Statistics 

The Ordinary  Least  Squares  (OLS)  method  was  selected  to  estimate  the  parameters. OLS 
is  usually  recommended  when  nothing  is  known  about  the  measurement  errors peck  and 
Arnold,  1977, 0 6.21, since  even with little  or no information on the  error distribution, an 
adequate  predictor may  be obtained.  However, when  information  regarding  the statistics 
of the errors is  known or assumed,  the  process  produces an efficient estimator of the 
coefficients (pi.>. This section  analyzes  the  statistical  results of the  use of this method 
and identifies the  general  form of the  predictive  equation  which  is  the  basis for the Cost 
Estimation  Relationships  (CER’s) which  are  discussed in the  next  section. 

In order to be succinct in  expressing  the  logic of the  process, we  will  resort to matrix 
notation  in  describing  the  analysis  [Beck  and  Arnold,  1977, 0 6.21. The  sum of squares 
function  used  for  ordinary  least  squares with the  linear  model q=XQ is 

s = (Y - XQ)& (Y -X@+? 

where Y and X are defined by <4> and <5> respectively and @ is a vector of the 
undetermined  coefficients pj, where, j= 0,n. 

Proceeding to the  usual  solution to this  regression  relationship  produces  the statistical 
information  required  to  assess  the fit to  the  data.  Table 4 illustrates a layout of the  typical 
statistical  parameters  normally  used  to  evaluate  is fit. 
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Table 4. Results of Linear Estimation  Process  Required for Assessment 

Estimated  Coefficients  (b,)  and  related  statistics 
b k  I bk-1 I I o  I o  I b2 I bl I bo 

Est.  Value  (b,) ... ... ...  ... ... ... ... ... 
Std. Error (SE) ... ... ... ... ... ... ...  ... 
t Statistic ... ... ... ...  ... ... ... ... 

... ... ... ... ... ... 

The predicted bj values and  the standard errors for the coefficients are, of course, 
produced as a direct  result of the least  squares  minimization. 

Under  the  assumptions  being  invoked,  the t statistic for each  bj  may  be computed as, 

The Coefficient of Multiple  Determination,  R2,  is  defined as, 

where, SSreg is  the  regression  sum of squares  (the  deviation  between  the  regression  line 
(Y’i)  and the mean ( 1) and  SStot  is  the  total  sum of squares  (the  total  deviation  between 
the  data  (Yi)  and  the  mean ( x).  However,  since  SStot  is  the  sum of SSreg and SSresid, 

the R2 statistic may  be calculated as, 

<lo> 

The F statistic,  used in the  test  for  lack of fit is  computed  as, 

The F statistic for the fit is  dependent on the  degrees of freedom, df, which  is  defined  for 
the table above, as: the  number of data points, n, less the  number  of variables being 
determined in the  regression  analysis, k (including  the  constant,  bo). 

The F-test  criteria for goodness of fit used  is that, 
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where  Fcrit  is  the F(k, df, -) critical  value  from  the  F-tables.  The greater F is  than  the 
Fcrit  value,  the  better  the  confidence  that  the  “best” fit has  been achieved. 

Cost  Estimation  Relationships  and  Constraints 

The  cost estimation relationships,  which  are  the  direct expression of the  model, 
are built  utilizing  the  predictive  equation <6>, the  coefficients  determined  in  the linear 
estimation  process,  and  the  corresponding statistics described in the prior section. This 
section summarizes the  CER’s developed for the Spacecraft Subsystem Model by 
subsystem, including the constraints imposed by the data sets used in the linear 
estimation  process. 

1. Attitude  Determination  and  Control  (ADCS) 

The following  CER for the  estimated  subsystem  cost (Y) in  millions  of dollars  (FY97) 
was  determined for ADCS  subsystems  within  the  range of  the data  domain: 

Y = bo + bl*X1+ b2*  X2 + b3*X3 

Coefficients & Constraints for ADCS 

2.  Command  and  Data  Handling  (C&DH) 

Coeff. 

Symbol 

Coeff 

Value 
bo 

0.2428 bl 

9 .674 

- 0 . 0 0 4  b3 

0.0064 b2 

The  following  CER for the  estimated  subsystem  cost  (Y) in millions of dollars  (FY97) 
was  determined for C&DH subsystems  within  the  range of the  data  domain: 

Y = bo + bl*X1+ b2*  X2 <14> 

Coefficients & Constraints for C&DH 

S mbol Value 
0.3078 
0.01 63 
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This  CER  covers  the  sum of  both  hardware  and software  for the C&DH subsystem. 

3.  Telecommunications  (Telecom) 

The  following  CER  for  the  estimated  subsystem  cost  (Y) in millions of dollars  (FY97) 
was  determined  for  Telecommunications  subsystems  within  the  range of  the data  domain: 

Y = bo + bl*X1+ b2*  X2 + b3*  X3+  b4*  X4 <15> 

Coefficients & Constraints for Telecom 
Coeff. 

Value ,Symbol 
Coeff 

,bo 

- 3 . 5 4  b 3  

0.16946 ,bl 

10.4 

b2 0.9755 

ba - 6 . 7 6 2 3  

4. Power  Generation  (Power) 

The  following  CER  for  the  estimated  subsystem  cost (Y) in  millions  of dollars  (FY97) 
was  determined  for  Power  subsystems  within  the  range of the  data  domain: 

Coefficients & Constraints for Power 

X Parameters 
nla n ta  Constant =1 X 0 
Avg u n i t s  

x1 

5 5 3 ordinal GaAs x 5  
304 ordinal GsAs/HT X 4  

2038 ordinal Adv Si X 3  
21.9 ordinal m c  x 2  
349 krads Rad.Dosage 

Constraints  
S.Dev lMax 

~ 

972  4000 

31 98 
4600 1 1  10 

10500 

19001 7900 

Min 
nla 

5 
0 
0 
0 
0 

Coeff. 
Value Symbol  
Coeff 

0 .002 bl 
5 .08 bo 

0.002 b4 
0.001 b3 

0.1579 b2 

5. Propulsion 

The  following  CER  for the  estimated  subsystem  cost (Y) in millions of dollars  (FY97) 
was  determined  for  Propulsion  subsystems within the  range of the  data  domain: 
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Coefficients & Constraints for Promision 
Constraints  

X Parameters 
nla  nla  nla  nla nla X o Iconstant =I 
Min  Max S.Dev Avq u n i t s  

X 1 
5 . 4   8 . 2  1 6 .1  nla Ln ISP X 2  
7 . 4  220.1 5 9   7 2 . 9  kg Subsystem  Mass 

- 1  2 . 8  
0.05376 

3.202 

6. Structures 

The following  CER  for  the  estimated  subsystem  cost  (Y) in millions of dollars  (FY97) 
was  determined  for  Structures  subsystems  within  the  range of the  data  domain: 

Y = bo + bl*X1+ b2* X2 
where  Y = Ln  (cost). 

Coefficients & Constraints for Structures 

X Parameters  units 

- 4  6 3 1 n/a Ln DIL Data  Rate X 2 
3 6 1 5 nla Ln SS Mass x 1  

nla  nla  nla nla nla Constant =1 X 0  
Min  Max  S.Dev Avq 

Cost is obtained  from  this  CER by computing ey. 

Constraints  

<18> 

0.65276 
0.33002 
0.00464 

A supplementary  estimate of  the  mechanical  build-up  that  is  usually  associated  with 
structures.  This  CER  is, 

Y = bo + bl*X1+ b2*  X2 

Coefficients & Constrail 

X Parameters 
X o Iconstant =I 
X 1 ISubsystem  Mass 
X 2 I Pointing Knowledge 

I 

t s  for Mechal lical Build Up 
Constraints  

S.Dev IMax 
nta !n/a 

<18a) 

1.833 

- 0 . 0 0 0 4  

7. Thermal  Protection 

The following  CER  for  the  estimated  subsystem  cost  (Y)  in  millions of dollars  (FY97) 
was  determined  for  Power  subsystems within the  range  of  the  data  domain: 

Y = bo + bl*X1+ b2*  X2  <19> 

13 



Coefficients & Constraints for 

X Parameters 
n/a X o Iconstant =I 
u n i t s  

X 1 
ordinal  ActiveIPassive X 2 
ordinal Redundancy 

Thermal 
Constraints 

f;mbol (I... 1 
1.81 7 
1.068 

b2 4.255 

Statistical  Summary 

In evaluating each  CER  the statistics on the  bj coefficients and  the estimated response 
variable, Y were analyzed. The t, statistics were  tested  to determine if the resulting 
estimates for the coefficients were  significant  contributors.  This  information  was  used  in 
determining  which  coefficients to leave in the  regression  estimate  and  which to drop out. 
In general,  the  final t statistics  satisfied  the  t-test  criteria for significance. The R2 and  the 
F statistic were  used  to  determine  the  goodness of fit of the  resulting  predictive  equation 
for Y. The following table  summarizes  the  estimate  statistics  associated  with  the  CER’s 
listed  above. 

Table 6. Summary  Estimate  Statistics 

Subsystem 
.89  ADCS 

df k F R 2  

1 3  2 2 4  . 8 1  m 
1 2  3 3 3  

ITelecomm I . 8  8 I 2 0 I 4 I 1 1 
]Structures I .76 I 2 0  I 2 I 1 3 
Mech BU 

. 7 4  Thermal 
1 3  2 3 7  . 9 5  Power  Gen. 
1 3  2 5 9  .90  

M i n  . 7 4   1 7 . 2  2 . 0  1 1 . 0  
Average . 8 5   2 9 . 9   2 . 4   1 2 . 4  

1 3  2 9 0 . 9 3  Propulsion 
1 2  2 1 7  

Max . 9   9 0 . 3   4 . 0   1 3 . 0  

I 

6 . 7 0  -1-8.771 
I 

6 . 7 0  I 5 . 5 2  I 

6 . 5  4 . 6  
5 . 7  2 . 5  
6 . 9  1 3 . 5  

From  the  summary we see  that  all of the  coefficients of multiple  determination (R2) are 
very  high (.74 or above). The F statistics  are  similarly  high  and  compare  well  with  the 
Fcrit  values for each of  the  regression  estimates.  For  this  reason,  we believe that  the 
estimates produced by the  model  are  accurate  predictor’s of the  Team X estimates for 
missions that fall within  the  range of the data base  parameters. In order to visually 
demonstrate how  the  model  is  validated  against  the  source  data  itself,  we  show  (in figure 
1) a comparison of actual  thermal  subsystem costs (in the  data  base)  with  the  model 
predicted costs. Since the  thermal  subsystem fit was  the  one with the  minimum R2, and 
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since it demonstrates a more  than  adequate fit to  the data, the other fits are not  only 
adequate but  extremely  good. 

Fig. 1 Pred. vs  Actual Costs for Thermal 
s n  

R n  

7 n  

F 
6 .O 

y 5.0 
9 
7 4.0 

R n  

7 n  

i n  

0 .o 
1 2 3 4 5 6 7 8 9 1 0 1 1  1 2 1 3 1 4 1 5  

Droiect 

This does  not  mean  that  all  work  on  the  model  is  complete.  On  the contrary, a great  deal 
of fine tuning  is  being  conducted  as  our  continuing  sessions with the  cognizant engineers 
bring  out  other  causal  relations  and  parameters  that  need  to  be  validated  and  tested. It is 
the goal of the cost team  to achieve results such  that  all of the predictive equations 
achieve  the  optimum  ability top  predict  costs  within  the  range of the  parameters. 

Cost  Model  Utilization  in  an  Interactive  Environment 

The cost model CER’s are currently being utilized by Team X in  an interactive 
environment that permits spacecraft designers to see the  cost impact of their design 
decisions as they progress. This  permits  them to make  the  necessary trades between, 
science, technology, and engineering practice to achieve a design that falls within a 
specific  cost  cap. 

The  Team X facility  consists of a set of terminals  assigned  to  the  subsystem engineers, 
the system  engineer,  and a documentarian.  All of the  terminals  are  centrally  linked  and 
the screen of  any  of  the  terminals  may  be  displayed  to  the  customers  and  the  engineers  in 
the  conduct of the  discussion. As each of the  subsystems  develop a design  that  attempts 
to  meet  the  customer’s  requirements,  the  technical  parameters of the  subsystem  are 
published  to  all  the  subscribing work stations.  The  cost  workstation  maintains an  updated 
list of these  parameters  and  links  them  to a spreadsheet  built  from  the CER’s described  in 
this  paper.  The  cost  results  are then also  published  to  the  subscribers,  but  mainly  to  the 
system  engineer  who  weighs the  cost  trend with the  design  to  determine  what, if any 
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trades  have to be  made. As the  design  converges, so does  the  subsystem  and  spacecraft 
costs as  well. 

The following  diagram  indicates the  basic flow of information in the  Team X process: 

Figure 2: Team X Process  (Physical  Set Up and  Fow of Data) 

Mission 
Scientist) 

Grass Roots Costs 

Concluding  Remarks 

The Unmanned  Spacecraft  Subsystem  Cost  Estimation  Model,  has  evolved  into  one of 
the key tools  being  used  to  plan  and  cost  advanced  missions. The ability  to  predict  what 
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the  Team X group  of experts  would  estimate as the  cost of a proposed  mission  is  of  great 
value in performing  cost  trades  and  off-line  studies  before  calling a Team X session. 
Besides  avoiding  unnecessary  planning  costs,  the  model  permits  the  cost  analyst 
supporting  the  Team X sessions to  evaluate  the  costs  that  are  currently  being  estimated 
against  the  model.  He  may  then  bring  any  inconsistencies  to  the  attention of the  Team 
lead  and  have  the  issue  resolved  during  the  session.  In  every  respect,  the  model  will 
enhance  the  efficiency of  the  planning  process  and  improve  the  quality  of  cost  estimates 
for  advance  projects  under  study by Team X. 

In  the  future,  the  model  will  also  be  validated  against  actual  project  implementation  costs 
as these  occur.  Once a sufficient  number of these  new  projects  have  been  implemented 
and  the  model is modified  to  reflect  these  data,  the  model  will  become  the  de facto tool 
for  predicting  future  project  costs  which  are  compliant to the  DNP  approach. The model 
is  currently  being  adapted  to  handle  non-DNP  projects  as  well. 
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